
Lesson 5: Functions in JavaScript

Objective

By the end of this lesson, students will understand how to create and use functions in JavaScript, including

function parameters, return values, and different ways to define functions.

1. Introduction to Functions

Functions are reusable blocks of code designed to perform a specific task. They help make code more modular,

readable, and maintainable.

What is a Function?

A function is a set of instructions that perform a specific task when called.

Functions help avoid code repetition by allowing you to write code once and reuse it multiple times.

Why Use Functions?

Code Reusability: Write once, use multiple times.

Modularity: Break complex problems into smaller, manageable functions.

Abstraction: Hide the implementation details and expose only what is necessary.

2. Defining and Calling Functions

Function Declaration

A function can be declared using the function keyword.

function greet() {
 console.log("Hello, World!");
}

Calling a Function

To execute the code inside the function, you need to call it.

greet(); // Output: Hello, World!

Function Parameters and Arguments

Parameters: Variables listed as part of the function s̓ definition.

Arguments: Values passed to the function when it is called.

function greet(name) {
 console.log("Hello, " + name + "!");
}

greet("Alice"); // Output: Hello, Alice!

Returning Values

A function can return a value using the return statement.

function add(a, b) {
 return a + b;
}

let sum = add(5, 10); // sum is 15
console.log(sum); // Output: 15

3. Function Expressions and Arrow Functions

Function Expression

A function expression is when a function is stored in a variable.

const greet = function(name) {
 console.log("Hello, " + name + "!");
};

greet("Bob"); // Output: Hello, Bob!

Arrow Functions

Arrow functions provide a shorter syntax for writing function expressions.

const add = (a, b) => {
 return a + b;
};

let sum = add(2, 3);
console.log(sum); // Output: 5

Implicit Return in Arrow Functions

When the function body contains only a single expression, the return keyword can be omitted.

const multiply = (a, b) => a * b;

console.log(multiply(2, 4)); // Output: 8

4. Function Scope and Hoisting

Scope

Global Scope: Variables declared outside any function are in the global scope and can be accessed

anywhere.

Local Scope: Variables declared inside a function are in the local scope and can only be accessed within

that function.

let globalVar = "I am global";

function testScope() {
 let localVar = "I am local";
 console.log(globalVar); // Accessible
 console.log(localVar); // Accessible
}

testScope();
console.log(globalVar); // Accessible
console.log(localVar); // Error: localVar is not defined

Hoisting

Function Hoisting: Function declarations are hoisted to the top of their scope, meaning you can call a

function before it is defined.

console.log(add(2, 3)); // Output: 5

function add(a, b) {
 return a + b;
}

Variable Hoisting: Variables declared with var are hoisted, but their values are not initialized. let and
const are not hoisted.

console.log(x); // Output: undefined
var x = 5;

console.log(y); // Output: ReferenceError: y is not defined
let y = 10;

5. Hands-On Practice

Exercise 1: Simple Calculator

Write a function that takes two numbers and a mathematical operator (+ , - , * , /) and returns the result.

function calculator(a, b, operator) {
 if (operator === '+') {
 return a + b;
 } else if (operator === '-') {
 return a - b;
 } else if (operator === '*') {
 return a * b;
 } else if (operator === '/') {
 return a / b;
 } else {
 return "Invalid operator";
 }
}

console.log(calculator(10, 5, '+')); // Output: 15

Exercise 2: Greeting Function

Write a function that takes a person s̓ name and age and returns a greeting message.

function greetPerson(name, age) {
 return `Hello, ${name}! You are ${age} years old.`;
}

console.log(greetPerson("Alice", 30)); // Output: Hello, Alice! You are 30
years old.

Exercise 3: Array Sum Function

Write a function that takes an array of numbers and returns the sum of all the numbers.

function sumArray(numbers) {
 let sum = 0;
 for (let number of numbers) {
 sum += number;
 }
 return sum;
}

let numbers = [1, 2, 3, 4, 5];
console.log(sumArray(numbers)); // Output: 15

6. Homework/Assignment

Assignment 1: Maximum of Three Numbers

Write a function that takes three numbers and returns the maximum of the three.

Assignment 2: Factorial Function

Write a function that takes a number and returns its factorial. The factorial of a number is the product of all

positive integers less than or equal to that number.

Assignment 3: Palindrome Checker

Write a function that checks if a given string is a palindrome (a word that reads the same backward as

forward).

7. Recommended Resources

Documentation and Tutorials

MDN Web Docs: Functions

A detailed guide on functions, including how to define and call functions, and different types of functions

in JavaScript.

JavaScript.info: Functions

A comprehensive resource on functions in JavaScript, covering everything from basic syntax to advanced

concepts.

Video Tutorials

Programming with Mosh: JavaScript Functions

A video tutorial that explains functions in JavaScript with practical examples.

Traversy Media: JavaScript Functions Tutorial

A thorough video guide on understanding and using functions in JavaScript, with clear examples and

explanations.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://javascript.info/function-basics
https://www.youtube.com/watch?v=9emXNzqCKyg
https://www.youtube.com/watch?v=q3mwdbqsWkk

