
Lesson 8: Working with Forms and Form Validation

Objective

By the end of this lesson, students will understand how to interact with HTML forms using JavaScript, how to

retrieve and manipulate form data, and how to implement basic form validation to ensure data integrity before

submission.

1. Introduction to Forms in JavaScript

What Are Forms?

Forms are a key part of web development, used to collect user input.

HTML forms can contain elements like text inputs, radio buttons, checkboxes, select dropdowns, and

submit buttons.

Form Elements

<input> : Used for various types of data input (text, password, email, etc.).

<textarea> : Used for multi-line text input.

<select> and <option> : Used for dropdown lists.

<button> : Used to trigger actions (e.g., form submission).

Form Attributes

action : Specifies where the form data should be sent after submission.

method : Specifies the HTTP method to use when sending the data (e.g., GET , POST).

2. Accessing Form Elements with JavaScript

Selecting Form Elements

You can select form elements using document.getElementById() , document.querySelector() , or
document.forms .

let nameInput = document.getElementById('name');
let form = document.forms['myForm'];

Retrieving Form Data

You can retrieve the value of form elements using the value property.

let userName = nameInput.value;
console.log('User Name:', userName);

Modifying Form Data

You can modify the value of form elements by setting the value property.

nameInput.value = 'John Doe';

3. Basic Form Validation

Why Validate Forms?

Form validation ensures that the data entered by the user is accurate and complete before submission.

It improves data integrity and user experience by providing immediate feedback on incorrect input.

Client-Side vs. Server-Side Validation

Client-Side Validation: Performed in the browser using JavaScript before the data is sent to the server.

Server-Side Validation: Performed on the server after the form is submitted. This is the final line of

defense but may be slower for the user.

Common Validation Techniques

Required Fields: Ensure certain fields are not left empty.

Input Length: Ensure the input is within the specified length (e.g., minimum password length).

Pattern Matching: Ensure the input matches a certain format (e.g., email format).

Example: Validating a Required Field

let emailInput = document.getElementById('email');
if (emailInput.value === '') {
 alert('Email is required!');
}

Example: Validating Email Format

let email = emailInput.value;
let emailPattern = /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,6}$/;
if (!emailPattern.test(email)) {
 alert('Please enter a valid email address.');
}

4. Preventing Form Submission

Preventing Default Behavior

You can prevent the form from being submitted by using event.preventDefault() in the form s̓ submit

event handler.

let form = document.getElementById('myForm');
form.addEventListener('submit', function(event) {
 event.preventDefault();
 // Additional validation logic here
});

Handling Validation Errors

If the validation fails, display error messages to the user and prevent the form from being submitted.

let form = document.getElementById('myForm');
form.addEventListener('submit', function(event) {
 let name = document.getElementById('name').value;
 if (name === '') {
 event.preventDefault();
 alert('Name is required!');
 }
});

5. Hands-On Practice

Exercise 1: Simple Login Form

Create a login form with fields for the username and password. Add validation to ensure both fields are filled

out before submission.

Exercise 2: Email Subscription Form

Create a subscription form with an email input field. Add validation to check if the email is in the correct format

before submission.

Exercise 3: Contact Form with Multiple Fields

Create a contact form with fields for name, email, and message. Add validation to ensure that:

The name field is not empty.

The email is in the correct format.

The message field contains at least 20 characters.

6. Homework/Assignment

Assignment 1: Registration Form

Create a registration form with fields for username, password, confirm password, and email. Implement

validation to:

Ensure all fields are filled out.

Ensure the password and confirm password fields match.

Ensure the email is in the correct format.

Assignment 2: Survey Form

Build a survey form with multiple input types (text, radio buttons, checkboxes, etc.). Add validation to ensure

required fields are completed and display appropriate messages for any missing or incorrect input.

Assignment 3: Feedback Form

Create a feedback form with fields for name, email, and a multi-line text area for comments. Ensure that:

The name and email fields are required.

The email is in the correct format.

The comments field contains at least 50 characters.

7. Recommended Resources

Documentation and Tutorials

MDN Web Docs: Working with Forms

A comprehensive guide to working with forms in HTML and JavaScript, including form elements,

attributes, and best practices.

JavaScript.info: Forms, Controls

A detailed tutorial on working with forms and controls in JavaScript, covering form submission, validation,

and interaction.

Video Tutorials

Traversy Media: Form Validation with JavaScript

A practical guide to adding client-side form validation using JavaScript, including examples of different

validation techniques.

Academind: JavaScript Form Validation Tutorial

A tutorial focused on building a robust form validation system in JavaScript, explaining the concepts and

providing practical examples.

https://developer.mozilla.org/en-US/docs/Learn/Forms
https://javascript.info/forms-controls
https://www.youtube.com/watch?v=rsd4FNGTRBw
https://www.youtube.com/watch?v=riDzcEQbX6k

